
Summary 
A couple of weeks ago, I was inspired to revisit Newton's method for solving nonlinear equations. I was 

reminded of my undergrad days when I read a paper by Madsen and Reid about finding the roots of a 

polynomial. What struck me at that time is Madsen-Reid's application of Newton's method with a line 

search was faster than any other algorithm. The Madsen-Reid papers were written in 1973 and 1975. 

Ever since then, when another paper benchmarked various algorithms to find roots of polynomials, 

Madsen-Reid would win; to my knowledge, if root-finding of polynomials is benchmarked in literature 

and the Fortran Madsen-Reid algorithm (PA16 and/or PA17) is used, the Madsen-Reid algorithm is the 

fastest and nearly the most accurate. What made the algorithm so successful? How can this generalize 

to solving a set of nonlinear equations? In this post, I plan to discuss these ideas. 

Note that I have a little math syntax but not as much as you would find in a math article or paper. This 

means my language is a little more inexact and high level without explaining all the detail. 

The Madsen-Reid Algorithm 
The Madsen-Reid algorithm can be summarized as follows: 

1. Calculate a newton direction 𝑑 = −𝑓′−1𝑓.  Do a line search along the 𝑑 direction to find where 

|𝑓| is the smallest. However, don't find the minimum perfectly. Instead, quit after |𝑓| isn't 

decreasing in a sequence of new guesses along 𝑑. This is called "stage 1." 

2. Switch to pure newton iteration based on checking an inequality that ensures convergence. This 

is called "stage 2" pure Newton iteration. If the inequality fails, go back to stage 1. 

The beauty of the Madsen-Reid algorithm is that it is 

• Fast 

• Simple 

• Guaranteed quadratic convergence even to roots with multiplicities greater than 1 because of 

stage 1 line search. Guaranteed quadratic convergence is rare. 

 

Link to a paper describing the Madsen-Reid algorithm: https://apps.dtic.mil/sti/pdfs/ADA278422.pdf 

C++ implementation of Madsen-Reid algorithm: http://www.hvks.com/Numerical/ports.html 

Fortran code PA16 and PA17 can be found at https://www.hsl.rl.ac.uk/catalogue/  

Nonlinear Equation Systems, Convex Optimization 
Newton iteration with a line search has shown up a lot since Madsen-Reid in optimization and root 

finding of nonlinear equation systems. It isn't necessarily because of Madsen-Reid that Newton's 

method with line search is broadly used. The reason, in my opinion, is different researchers or 

practitioners have found that Newton's method with line search is highly effective. 

The parallels between Newton iteration with line search in optimization and nonlinear equation solving 

are: 

https://apps.dtic.mil/sti/pdfs/ADA278422.pdf
http://www.hvks.com/Numerical/ports.html
https://www.hsl.rl.ac.uk/catalogue/


Unconstrained convex optimization 
(minimization) 

Nonlinear equation system 

𝐶𝑜𝑠𝑡 = 𝐹(𝑥) 
Where 

• 𝑥 is a vector value function. 

• 𝐹 is a scalar function of 𝑥. 𝐹 is at least twice 
differentiable or some similar fancy math 
requirement using advanced ideas such as 
Lipschitz continuity. The point is 𝐹 needs to 
be twice differentiable in some sense. 

You can think of the cost as 

𝐶𝑜𝑠𝑡 =  ||𝐹(𝑥)||
1
 

Where 

• ||  ||
1

 is one norm (absolute value of the 

elements of the vector summed).  

• However, this isn't necessary. The above 
equation helps make the analog to 
optimization only, in my opinion. 

The gradient is 0 at minimum 
𝜕𝐹

𝜕𝑥
= 0 

Where 
𝜕𝐹

𝜕𝑥
 is a vector value function of the 𝑥 vector. 

 

𝐹(𝑥) = 0 
Where 

• 𝐹(𝑥) is a vector value function of vector x.  

• 𝐹 must be twice differentiable in some 
sense, at least locally. More advanced 
math will use advanced ideas to say what 
this means. 

The Newton iteration with line search is 
 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝐷 

𝐷 = (
𝜕2𝐹

𝜕𝑥2)

−1

(−
𝜕𝐹

𝜕𝑥
) 

where 

• 
𝜕2𝐹

𝜕𝑥2 is the Hessian matrix. If 𝐹 was twice 

differentiable, then 
𝜕2𝐹

𝜕𝑥2 is always symmetric. 

It should not be singular if you are going to 
invert it. 

• 𝐷 is the direction of the line search. 

• 𝛼 is the size of the step found via a line 
search along 𝐷. There are many inexact and 
exact ways to do the line search. Quadratic 
approximation, Inexact Line Search, etc. The 
point is to find an 𝛼 that decreases 𝐹.  
See https://youtu.be/MKmIvtq83LY for 
Quadratic Approximation. 
See https://youtu.be/MzmqM0tuO1Q for 
an inexact line search. 

The Newton iteration with line search is  
𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝐷 

𝐷 = (
𝜕 𝐹

𝜕𝑥
)

−1

(−𝐹) 

Where  

• 
𝜕 𝐹

𝜕𝑥
 is the Jacobian matrix. It is not 

symmetric like in optimization. It can't be 
singular if you are going to invert it. 

• 𝐷 is the direction of the line search. 

• 𝛼 is the size of the step found via a line 
search along 𝐷. There are many inexact 
and exact ways to do the line search. 
Quadratic approximation, Inexact Line 
Search, etc. The point is to find an 𝛼 that 

decreases the one norm of 𝐹, ||𝐹(𝑥𝑘 +

𝛼𝐷)||
1
. 

See https://youtu.be/MKmIvtq83LY for 
Quadratic Approximation. 
See https://youtu.be/MzmqM0tuO1Q for 
an inexact line search. 

The guarantee of convergence of the newton 
iteration with line search is  

• 
𝜕2𝐹

𝜕𝑥2 is positive definite. Said another way, 𝐹 

is convex (looks like a parabola).  

• If it is not positive definite, then we need to 
find a replacement direction to search. That 
direction can come up in many ways but 
boils down to a change in the direction 

I am not sure what the guarantee of 
convergence is for Newton iteration in the 

nonlinear system case. As far as I know, 
𝜕 𝐹

𝜕𝑥
 

needs to be invertible, thus nonsingular. I think 
that is the only requirement. However, we 

would like to find a way for it to still work if 
𝜕 𝐹

𝜕𝑥
 

is sometimes singular. This what we want to 
explore in the below sections. 

https://youtu.be/MKmIvtq83LY
https://youtu.be/MzmqM0tuO1Q
https://youtu.be/MKmIvtq83LY
https://youtu.be/MzmqM0tuO1Q


moving away from a saddle point. See: 
https://youtu.be/x1wMciVA6Xc?t=180  

 
 

 

LU factorization musings related to newton iteration 
When solving for the direction, 𝐷, 

𝐽 =
𝜕 𝐹

𝜕𝑥
 

𝐽𝐷 = −𝐹 

The 𝐿𝑈 factorization with partial pivoting of 𝐽 is the best approach to solve this linear system of 

equations. In MATLAB, 𝐷 = 𝐽\−𝐹 does the 𝐿𝑈 factorization with partial pivoting underneath the hood 

like this: 

 [L,U,P] = lu(J); 

y = L\(P*-F); 

D = U\y; 

If instead of using a backslash, we do the 𝐿𝑈 factorization with partial pivoting ourselves, we can 
discover when the Jacobian is ill-conditioned by looking at the diagonal of the upper triangular matrix 𝑈. 
Let's look at this in an example before going further. 
 

A = gallery('chebspec',3,0) % this will produce an ill-conditioned A. It has rank of 2. 

[L,U,P] = lu(A) 

A = 

          1.5           -2          0.5 

          0.5            0         -0.5 

         -0.5            2         -1.5 

L = 

            1            0            0 

     -0.33333            1            0 

      0.33333          0.5            1 

U = 

          1.5           -2          0.5 

            0       1.3333      -1.3333 

            0            0  -1.1102e-16 

P = 

     1     0     0 

     0     0     1 

     0     1     0 

The U(3,3) is very small. It is close to 0, which implies that 𝐴 is singular within double floating-point 

precision. U(3,3) very small leads me to my point: Can we use this? Can we eliminate columns and rows 

from the Jacobian holding constant the value of corresponding value in 𝑥 at the current iteration to find 

a valid search direction? 

https://youtu.be/x1wMciVA6Xc?t=180


Let's explore this. We need a toy problem to work with. Here is one: 

𝐹(𝑥) = [
𝑥1

3 arctan(𝑥2) − 2

𝑥1 + 𝑥2
2 − 5

] 

𝑥 = [
𝑥1

𝑥2
] 

The Jacobian is then: 

𝜕𝐹

𝜕𝑥
= 𝐽 = [

3𝑥1
2 arctan(𝑥2)

𝑥1
3

𝑥2
2  +  1

1 2𝑥2

] 

 
This 𝐹 was chosen so there was a saddle point at 𝑥1 = 0 and 𝑥2 = 0.  Note that this 𝐹 has other 

problems, such as horizontal asymptotes in arctan that cause the newton iteration to have problems. 

This is on purpose, and the line search should take care of problems created by arctan. 

There are several cases to analyze: 

1. What do we do if we started from or land on 𝑥 =  [0,0]𝑇? 
2. We start or land on 𝑥 = [0, 𝑥2 ≠ 0]𝑇.  
3. We are close to 𝑥 = [𝜖, 𝑥2]𝑇 where 𝜖 is a small number making the Jacobian ill-conditioned but 

not singular according to MATLAB. 
 

Case 1, 𝑥 = [0,0]𝑇  
𝐹 and J are  

𝐹 = [
−2
−5

 ] 

𝐽 = [
0 0
1 0

] 

If we explicitly write out the equations for 𝐷 we get: 

0 ∗ 𝐷1 + 0 ∗ 𝐷2 = 2 

1 ∗ 𝐷1 + 0 ∗ 𝐷2 = 5 

The 𝐿𝑈 with partial pivoting is  

𝐿 = [
1 0
0 1

] 

𝑈 = [
1 0
0 0

] 

𝑃 = [
0 1
1 0

] 

Since 𝑈(2,2) is 0, the Jacobian is singular. The last column of 𝑃 tells us what equation we can eliminate. 

In this case, we can eliminate the first equation. I think that the 𝑃(1,2) implies that the second column 



can be eliminated; this is more easily seen in explicitly writing out the equations for 𝐷 above. Thus, we 

have 

1 ∗ 𝐷1 = 5 

and we replace the column that we lost with 

𝐷2 = 0 

We can see what our direction should be is  

𝐷 = [
5
0

] 

However, we need to work this out from the 𝐿𝑈 factorization so we can use it more generally later. We 

replace the second column of U with 1 on the diagonal. The new 𝑈 is  

𝑈 = [
1 0
0 1

] 

We need to replace the last row of 𝐿 with one on the diagonal. The new 𝐿 is 

𝐿 = [
1 0
0 1

] 

𝑃 does not change. However, the second row of 𝑃𝐹 changes to 0. The new 𝑃(−𝐹) is 

𝑃(−𝐹) = [
5
0

] 

At this point, we carry out the equations to solve the linear system. 

𝑦 = 𝐿−1𝑃(−𝐹) = [
1 0
0 1

] [
5
0

] = [
5
0

] 

𝐷 = 𝑈−1𝑦 = [
1 0
0 1

] [
5
0

] = [
5
0

] 

Now we have a direction. The question is, does it take us in a direction that makes any sense? If we look 

at the line search, we get the graph below. The 𝛼 = 1 seems to be the best choice. 



 

The next guess is  

𝑥𝑘+1 = [
0
0

] + 1 [
5
0

] = [
5
0

] 

And the corresponding 𝐹 is 

𝐹𝑘+1 = [
−2
0

] 

The Jacobian is 

𝐽𝑘+1 = [
0 125
1 0

] 

𝐿𝑈 factorization with partial pivoting is 

𝐿𝑘+1 = [
1 0
0 1

] 

𝑈𝑘+1 = [
1 0
0 125

] 

𝑃𝑘+1 = [
0 1
1 0

] 

The diagonals of 𝑈 are not zero, so the Jacobian is not singular. 



The initial finding here is we CAN use the 𝐿𝑈 decomposition to find a search direction even when we are 

on a saddle point. This is good news! More work is needed with a bigger system of equations to see if 

we can always do this. 

 

Case 2,  𝑥 = [0, 𝑥2 ≠ 0]𝑇   
𝐹 and 𝐽 are  

𝐹 = [
−2

−𝑥2
2 − 5

 ] 

𝐽 = [
0 0
1 2𝑥2

] 

If we explicitly write out the equations for 𝐷 we get: 

0 ∗ 𝐷1 + 0    ∗ 𝐷2 = 2 

1 ∗ 𝐷1 + 2𝑥2 ∗ 𝐷2 = 𝑥2
2 + 5 

The 𝐿𝑈 with partial pivoting is  

𝐿 = [
1 0
0 1

] 

𝑈 = [
1 2𝑥2

0 0
] 

𝑃 = [
0 1
1 0

] 

At this point, we eliminate the first equation and second column. The new 𝐿, 𝑈, 𝑃, and 𝑃(−𝐹) are  

𝐿 = [
1 0
0 1

] 

𝑈 = [
1 0
0 1

] 

𝑃 = [
0 1
1 0

] 

𝑃(−𝐹) = [𝑥2
2 + 5

0
] 

At this point, we carry out the equations to solve the linear system. 

𝑦 = 𝐿−1𝑃𝐹 = [
1 0
0 1

] [𝑥2
2 + 5

0
] = [𝑥2

2 + 5
0

] 

𝐷 = 𝑈−1𝑦 = [
1 0
0 1

] [𝑥2
2 + 5

0
] = [𝑥2

2 + 5
0

] 

Now we have a direction. The question is, does it take us in a direction that makes any sense? If we look 

at the line search, we get the graph below. Note, several different views are displayed because of the 3d 



nature of the graph. The answer is we can always take a direction that makes sense based on the 

direction found. 

 

 



 

 

If we plot 𝑥2 vs. 𝛼 we get: 

 



 

If we expand out the graph above for large values of 𝑥2 we see that 𝛼 is heading towards 0 (shown 

below). In the limit 𝑥2 goes to infinity, 𝛼 will go to 0. This tends to point to situations where the ill-

conditioning of finding a new 𝑥𝑘+1. When 𝛼𝐷 is near working precision of 𝑥𝑘, then 𝑥𝑘+1 = 𝑥𝑘 to 

working precision. This would cause the Newton iteration to quit near a saddle point rather than near a 

solution of the nonlinear system of equations. We may have to detect this case by noting the singularity 

of the Jacobian from the LU factorization. We will need to search an arbitrary direction to get us off this 

ill-conditioned point. 

 

 

With our direction 𝐷, the 𝑥𝑘+1  is  

𝑥𝑘+1 = [
0
𝑥2

] + 𝛼 [𝑥2
2 + 5

0
] = [

𝛼(𝑥2
2 + 5)
𝑥2

] 

The machine double precision of 𝑥1 = 0 is 

𝑒𝑝𝑠(0) = 4.9407 ∗ 10−324 

This means that 𝛼(𝑥2
2 + 5) would have to be near 𝑒𝑝𝑠(0) for us to not find a new point, 𝑥𝑘+1. 𝛼 can be 

very small and it will still have an impact in this case. For instance, when 𝛼 = 10−16, 𝑥2 =

2.236082770647552 ∗ 108, 𝑥𝑘+1 = [5.000066157186832, 2.236082770647552 ∗ 108] which is still 

better than what we had before. More investigation is still warranted, but I am less concerned after 

looking at an example. 

 



Similar to case 1, we CAN take a step in a direction that makes sense. We may need to refine this at 

some point because of floating-point precision. For now, though, floating-point precision is not a 

problem for this case. 

 

Case 3,  𝑥 = [𝜖, 𝑥2]𝑇 
𝐹 and 𝐽 are 

𝐹(𝑥) = [
𝜖3 arctan(𝑥2) − 2

𝜖 + 𝑥2
2 − 5

] 

𝐽 = [
3𝜖2 arctan(𝑥2)

𝜖3

𝑥2
2  +  1

1 2𝑥2

] 

If we explicitly write out the equations for 𝐷 we get: 

3𝜖2 arctan(𝑥2) ∗ 𝐷1 +
𝜖3

𝑥2
2  +  1

∗ 𝐷2 = −𝜖3 arctan(𝑥2) + 2 

1 ∗ 𝐷1 + 2𝑥2 ∗ 𝐷2 = −𝜖 + 𝑥2
2 + 5 

 

Through a bit of experiment with 𝑥2 = 1 and trying to find when 𝐽 becomes rank 1 according to 

MATLAB, 𝜖 = 2 ∗ 10−8 is rank 2 while 𝜖 = 1 ∗ 10−8 is rank 1. 

For the case that 𝜖 = 2 ∗ 10−8 and 𝑥2 = 1, the 𝐿𝑈 factorization yields: 

𝐿 = [
1 0

9.42477796076938 ∗ 10−16 1
] 

𝑈 = [
1 2
0 −1.88495558815388 ∗ 10−15] 

𝑃 = [
0 1
1 0

] 

If we missed this as a singular case, we would get a direction of 

𝑦 = 𝐿−1𝑃(−𝐹) = [
1 0

−9.42477796076938 ∗ 10−16 1
] [

0 1
1 0

] [
−2

−3.999999980000000
]

= [
3.99999998

1.999999999999996
] 

𝐷 = 𝑈−1𝑦 = [1 1.061032956197551 ∗ 1015

0 −5.305164780987754 ∗ 1014] [
3.99999998

1.999999999999996
] 

= [ 2.122065912395102 ∗ 1015

−1.061032956197549 ∗ 1015] 

This direction is enormous in magnitude. It seems like it could cause problems. However, the line search 

keeps this from getting worse. For the above 𝐷, 𝛼 = 7.82707232360737 ∗ 10−16. The line search saves 

the day. This is what makes the Newton iteration with line search so robust. Even with a huge Newton 

direction, we can take an appropriate step because of the line search. 



𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝐷 = [2 ∗ 10−8

1
] + 7.82707232360737 ∗ 10−16 [ 2.122065912395102 ∗ 1015

−1.061032956197549 ∗ 1015] 

= [
1.660956357177832
0.169521831411085

] 

𝐹(𝑥𝑘+1) = [
−1.230531207840158
−3.310305991497200

] 

||𝐹(𝑥𝑘+1)||
1

= 4.54083719933736 

While  

||𝐹(𝑥𝑘)||
1

= 5.999999980000000 

In case 3, we CAN take a step that makes sense. The line search is the star of the show. It prevents us 

from taking too big of a step. 

What's Next? 
I need to 

• Write a MATLAB function for Newton iteration with line search and LU factorization to recognize 

singularity. 

• Implement a line search using a quadratic interpolation to find the step size, 𝛼. This will be key. 

Madsen-Reid's line search would also work. 

• I need to add inequality constraints. This will most likely add some Lagrange multipliers or 

something similar. This will be needed especially for functions like log where crossing a vertical 

asymptote is a terrible idea. This will be needed when we want one particular solution and don't 

want to cross into the basin of attraction to another solution. 

• Write this in Simulink so that it can be compiled to code and even work on fixed-point types. 

o This will require using some custom LU code. See the examples of the Fixed-point types 

for MATLAB functions. 

Conclusion 
Newton iteration with a line search with 𝐿𝑈 factorization to find the singular case looks to be a very 

robust nonlinear equation solver.  
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